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Abstract: A new, relativistic quantum wave equation is obtained by applying the quantum

prescriptions to the kinetic energy and momentum instead of the total energy and momentum. This

provides the Schr€odinger equation with a relativistic extension that modifies the Klein-Gordon and

Dirac equations. The wave functions for the modified Klein-Gordon equation are shown to allow

the probabilistic interpretation. For a resting particle, the modified Dirac equation gives a true vac-

uum state in addition to the wave solutions, no longer requiring the “Dirac Sea.” VC 2018 Physics
Essays Publication. [http://dx.doi.org/10.4006/0836-1398-31.4.421]

R�esum�e: Une nouvelle �equation d’onde quantique relativiste est obtenue en appliquant les

prescriptions quantiques �a l’�energie cin�etique et �a la quantit�e de mouvement au lieu de l’�energie

totale et de la quantit�e de mouvement. Ceci fournit l’�equation de Schr€odinger avec une extension

relativiste qui modifie les �equations de Klein-Gordon et de Dirac. Les fonctions d’onde pour

l’�equation de Klein-Gordon modifi�ee sont pr�esent�ees pour permettre l’interpr�etation probabiliste.

Pour une particule au repos, l’�equation modifi�ee de Dirac donne un v�eritable �etat de vide en plus

des solutions d’ondes, ne n�ecessitant plus la “mer de Dirac”.
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I. INTRODUCTION

It is well known that neither the Klein-Gordon (KG)

equation nor the Dirac equation, the two basic relativistic

quantum wave equations, reduces to the Schr€odinger

equation in the nonrelativistic limit. All one has to see is that

the energy level for a hydrogenlike atom calculated by either

the KG or Dirac equation, when higher order fine structure

terms are ignored, differs from that calculated by the

Schr€odinger equation by the amount of Mc2, where M is the

reduced mass of the electron-nucleus system and c is

the speed of light.1 In this paper, I show a new relativistic

quantum wave equation that emerges by requiring that they

reduce to the latter. I begin with the familiar energy momen-

tum relation for a particle2–7

E2 ¼ P2c2 þM2c4: (1)

If I denote E ¼ Mc2, the internal energy (many authors

call this the rest energy) I can then write E ¼ cMc2 ¼ cE to

be the relativistic total energy, P ¼ Mv to be the nonrelativ-

istic momentum, and P ¼ cMv ¼ cP to be the relativistic

momentum where c ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
and v is (the absolute

value of) the velocity of the particle. The energy momentum

relation, Eq. (1), may then be written

E2 ¼ P2c2 þ 1

c2
M2c4: (2)

When I work with the boosted energy and momentum, E
and P as in Eq. (1), I will say, I work in c-metric, that is I

work within

1 � c <1:

When I work with energy and momentum E and P that

are not boosted as in Eq. (2), I will say, in the following I

work in 1=c-metric, that is I work within

0 � 1=c � 1:

An advantage of working in 1=c-metric is that as the

velocity of the particle approaches the speed of light, I avoid

infinity (c!1 when v! c) but work with zero (1=c! 0

when v! c) instead. Another advantage is conceptual; if the

particle velocity is c, I no longer have to say, the mass is

zero but instead simply the effect of mass is zero. The c
appears in the equation as parameter; for instance, each of

the electron’s orbits in an atom has a particular angular

velocity and radius hence characteristic c or 1=c value, a cru-

cial information about the status of the particle.

II. SCHR €ODINGER EQUATION

I will first show the formalism to obtain the Schr€odinger

equation in the nonrelativistic limit both in c-metric and 1=c-

metric. I will then extend the same method to derive a fully

relativistic form of the quantum wave equation. I will discuss

how the new equation relates to the KG and Dirac

equations.1,8–13a)bmin@nubron.com
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In c-metric, I rearrange Eq. (1) to get

E�Mc2ð Þ EþMc2ð Þ ¼ P2c2 (3)

and note that for v� c, EþMc2 ¼ cMc2 þMc2 � 2Mc2.

Hence for the low velocity end, I get

T � P2

2M
; (4)

where T ¼ E�Mc2 is the relativistic kinetic energy of the

particle.

By substituting i�h @
@t for T, i�hr for P, and operating on a

function W, I obtain the Schr€odinger equation in the free

field

i�h
@W
@t
¼ � �h2

2M
r2W: (5)

In 1=c-metric, I use the same method as in the above to

rearrange Eq. (2) and note that for v� c, Eþ Mc2

c � 2Mc2.

Hence for the low velocity end, I obtain

T � P2

2M
; (6)

where T ¼ T
c ¼ E� Mc2

c . By substituting i�h @
@t for T, i�hr for

P and operating on a function W, I again obtain the

Schr€odinger equation in the free field, Eq. (5).

III. RELATIVISTIC QUANTUM WAVE EQUATION

The above derivation of the Schr€odinger equation

presents a way of naturally extending the same to the fully

relativistic cases both in c-metric and 1=c-metric. I note that

it is the kinetic energy and momentum that the quantum pre-

scriptions must be applied to, not the total energy and

momentum, since after all it is the kinetic energy that gener-

ates the momentum.

A. Relativistic extension of the Schr€odinger equation
in c-metric

I further rearrange Eq. (1) to read

E�Mc2ð Þ E�Mc2 þ 2Mc2ð Þ ¼ P2c2 or

T2 þ 2Mc2T ¼ P2c2:
(7)

By substituting 6i�h @
@t for T, 6i�hr for P (signs in order),

and operating on a function U, I obtain

i�h
@

@t
U ¼ 6

�h2

2M
wU; (8)

where w � 1
c2
@2

@t2 �r2or in the tensor notation with the met-

ric (þ � � �)

@l@
lU ¼ 62i

Mc

�h
@0U; l ¼ 0; 1; 2; 3 : (9)

B. Relativistic extension of the Schr€odinger equation
in 1=c-metric

I further rearrange Eq. (2) in the same manner as Eq. (7),

substitute 6i�h @
@t for T � T=c and 6i�hr for P � P=c, and

operate on a function U to obtain

i�h
@

@t
U ¼ 6

�h2c
2M

wU (10)

or

@l@
lU ¼ 62i

Mc

�hc
@0U : (11)

The c-metric equation, Eq. (9), may be transformed to

the above simply by replacing the mass term M with M=c.

Note that both Eqs. (8) and (10) reduce to the

Schr€odinger equation, (5), if c ¼ 1 and the d’Alembertian w
is replaced with �r2. The above is a new relativistic quan-

tum wave equation for massive particles that reduces to the

Schr€odinger equation in the nonrelativistic limit, c � 1 and

w � �r2.

I define a unit four vector

Il ¼ Il
0 þ Il

1 þ Il
2 þ Il

3 ; (12)

where

Il ¼

1

1

1

1

0
BBBB@

1
CCCCA; Il

0 ¼

1

0

0

0

0
BBBB@

1
CCCCA; Il

1 ¼

0

1

0

0

0
BBBB@

1
CCCCA;

Il
2 ¼

0

0

1

0

0
BBBB@

1
CCCCA; Il

3 ¼

0

0

0

1

0
BBBB@

1
CCCCA:

(13)

When applied to the four derivative, it is understood that

Il@l ¼ @0 � @1 � @2 � @3

Il
0@l ¼ @0; Il

1@l ¼ �@1; etc:
(14)

This allows the above equation to be rewritten in a more

maneuverable form

@l@
lU ¼ 62i

Mc

�hc
Il
0@lU: (15)

In the following, I shall refer to the above as the

Modified Klein-Gordon (MKG) equation or sometimes the

Min equation (in the 1=c-metric) at least until we agree to a

better name, such as the “Relativistic Schr€odinger Equation.”

It is interesting to note that the left hand side term of the

above, the d’Alembertian, is contained in both the Maxwell’s

and the Klein-Gordon equations and the right hand side

(time derivative term) in both the Schr€odinger and the Dirac

equations, but none of these equations contain both.

422 Physics Essays 31, 4 (2018)



The Min equation may be decoupled into the bispinor

equations by deploying the Dirac formalism as following.

C. A modified Dirac equation

I will rewrite the energy-momentum equation, Eq. (1), in

a tensor form

PlPl �M2c2 ¼ 0; (16)

where l ¼ 0; 1; 2; 3, and

Pl ¼ ðP0;P1;P2;P3Þ ¼ ðP0;PiÞ ¼ ðE=c;PiÞ; (17)

where i ¼ 1; 2; 3. Following Dirac,9,10,13 the above may be

factored into two 4� 4 linear algebraic matrix equations

PlPl �M2c2 ¼ ðcjPj þMcÞðcjPj �McÞ; (18)

where the Dirac matrices, cl, are defined

cl ¼ ðc0; c1; c2; c3Þ ¼ ðc0; ciÞ (19)

with

c0 ¼ I 0

0 �I

� �
; ci ¼ 0 ri

�ri 0

� �
: (20)

I note P0 ¼ E=c ¼ cE=c ¼ cMc and denote ðP1;P2;P3Þ
� ~P and ðP1;P2;P3Þ � ~P, hence

!
P ¼ c~P.

I (or simply 1) is a 2� 2 unit matrix, and ri are 2� 2

Pauli matrices. From Eqs. (16) and (18), I get a factored

equation

cjPj �Mc ¼ 0 (21)

and

cjPj þMc ¼ 0: (22)

From the first set of the factored equations, Eq. (21), I

get

c0E�M

c
c2 � c

X
i

ciPi ¼ 0 (23)

which may be further rearranged

1 0

0 �1

� �
E�M

c
c2 � c

X
i

0 ri

�ri 0

� �
Pi ¼ 0; (24)

and finally, to

E�M

c
c2 0

0 � E�M

c
c2

 !
� 2

M

c
c2

0
BBBBB@

1
CCCCCA

¼ c
X

i

0 ri

�ri 0

 !
Pi: (25)

By substituting 6i�h@t for T ¼ E�Mc2=c ¼ T=c,

6i�hr for P ¼ P=c (signs in order), where @t � @
@t, and oper-

ating on spinors WA and WB, defined by

W �

W1

W2

W3

W4

0
BBBB@

1
CCCCA ¼

WA

WB

 !
;

WA �
W1

W2

 !
; WB �

W3

W4

 ! (26)

I obtain

6i�h@t 0

0 7i�h@t � 2
M

c
c2

0
B@

1
CA WA

WB

� �

¼ 6ic�h
X

i¼1;2;3

0 ri

�ri 0

� �
@i

WA

WB

� �
: (27)

By using the first of the following relationships: c0 �

1 ¼ 2
0 0

0 �1

� �
and c0 þ 1 ¼ 2

1 0

0 0

� �
; the above may

be written,

6i�hcl@lWþ c0 � 1
� �Mc

c
W ¼ 0: (28)

In the following, I will call the above the Modified Dirac

(MDirac) equation. In a decoupled form, it reads from

Eq. (27)

@0WA ¼ ri@iWB

6@0 � 2i
Mc

�hc

 !
WB ¼ 6ri@iWA:

(29)

The first is a massless, electromagnetic interaction

between the spinors, WA and WB. The second is a massive

interaction between the two as long as 1=c > 0. If v ¼ c,

then 1=c ¼ 0, and both are massless interactions. Massless in

the latter means not M ¼ 0, but M=c ¼ 0.

From the second set of factored equations, Eq. (22), I get

6i�hcl@lWþ c0 þ 1
� �Mc

c
W ¼ 0: (30)

I then get the exact same set of decoupled equations as Eq.

(29) except WA and WB are interchanged.

Hence, the modified Dirac equation, Eq. (28), is derived

from the Min equation. Conversely, the modified Dirac spi-

nors WA and WB can be shown to revert to Min equation

when combined. The modified Dirac equation describes the

interaction of two spinors both with and without mass.

This compares with the Dirac equation

i�hcl@lW�McW ¼ 0 (31)
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which may be decoupled to

@0þi
Mc

�h

� �
WA¼ri@iWB

@0�i
Mc

�h

� �
WB¼ri@iWA:

(32)

Both of the above pair of decoupled Dirac equations

describe the interaction of the two spinors through mass,

compared to Eq. (29) where in addition to the similar pair, a

third solution describes a massless interaction.

D. Simple solutions for the modified Dirac equation

1. A particle at rest

If W is independent of position, I get

@W
@x
¼ @W
@y
¼ @W
@z
¼ 0; (33)

i.e., Px ¼ Py ¼ Pz ¼ 0, or zero momentum and zero velocity

with 1=c ¼ 1. The Modified Dirac equation, Eq. (28), then

reduces to

6
i�h

c
c0 @W
@t
þ c0 � 1
� �

McW ¼ 0 (34)

or

6
1 0

0 �1

� � @WA

@t

@WB

@t

0
BBBB@

1
CCCCA�

0 0

0 �2

� �
i
Mc2

�h

WA

WB

� �
¼ 0:

(35)

I then get

@WA

@t
¼ 0

@WB

@t
¼ 6i

2Mc2

�h
WB

(36)

or

WA ¼ constant

WB ¼ e
6iMc2

�h=2
t

WBð0Þ:
(37)

The solutions of WA and WB may be interchanged due to

the second set of equations, Eq. (30). The above particles-at-

rest solutions compare with those of Dirac equation which

reads13

WA ¼ e
�iMc2

�h t

WAð0Þ

WB ¼ e
iMc2

�h t

WBð0Þ:
(38)

One of the above Dirac pair is a negative energy solution

representing antiparticles. The solutions for the MDirac

equation, Eq. (37), contain a constant solution in addition to

the particle-antiparticle solutions. The constant solution can

be set to zero representing the true vacuum state, eliminating

the requirement for the “Dirac Sea.” The particle solutions

have twice the energy of those for the Dirac equation,

Eq. (38).

2. Plane wave solutions

For the Modified Dirac equations, Eq. (28), I now look

for the plane wave solution of the type

WðxÞ ¼ ae6ij�xuðjÞ: (39)

Note that

@lWðxÞ ¼ 6ijlWðxÞ

and

cljl ¼ c0j0 �~c �~j ¼ j0 �~j �~r
~j �~r �j0

� �
: (40)

The Modified Dirac equation, Eq. (28), becomes

7�hcljl þ c0 � 1
� �Mc

c

� 	
u ¼ 0 (41)

or

7�hj0 6�h~j �~r
7�h~j �~r 6�hj0 � 2

Mc

c

0
B@

1
CA uA

uB

� �
¼ 0; (42)

so I get,

uA ¼
~j �~r
j0

uB

uB ¼
~j �~r

j07
Mc

ð�h=2Þc

uA:
(43)

In the above, uA and uB may be interchanged owing to Eq.

(30). By the use of the relationship Pl ¼ cPl ¼ c�hjl ¼ �hkl

and P0 ¼ E=c ¼ Mc, I then get

uA ¼
P �~r
P0

uB

uB ¼
P �~r

P07
2Mc

c

uA:
(44)

I can carry the above further to obtain the canonical

expressions for uA and uB, which, however, I will not pursue

here. It suffices to note that the two bispinors, uA and uB;
interact in the purely electromagnetic manner on one hand
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and through mass on the other. For the limiting case, v ¼ c
or 1=c ¼ 0; both are electromagnetic interactions.

IV. DISCUSSIONS

In this section, I discuss the Lorentz covariance of the

new formulation, in particular, the MKG equations, Eqs. (9)

and (11), and the MDirac equations, Eqs. (28) and (30).

Hereinafter, (M)KG stands for either (Modified) Klein-

Gordon or (Modified) Klein-Gordon equation(s) and

similarly (M) Dirac for (Modified) Dirac or (Modified)

Dirac equation(s). The Lorentz covariance of the KG and

Dirac equations may be proved directly by the Lorentz

transformation.13,14 By considering time-independent wave

functions,15 the author already showed the MKG to be spon-

taneously symmetry-broken form of the KG. Here I show it

in a more direct way: for both MKG and MDirac via local

U(1) gauge transformation of their counterparts, KG and

Dirac, respectively, followed by specializing in the time

dimension hence breaking the space-time symmetry. It is

clear then this symmetry-breaking originates from the use of

kinetic energy instead of the total energy for the first quanti-

zation (for all four equations).

The second source of the symmetry-breaking is the use

of 1=c-metric to regularize the equations, as in Eqs. (11),

(28), and (30). I will address the latter first in Sec. IV A

because I can address it in general terms and put it aside for

the discussions that follow. The former requires more spe-

cific analyses and will be addressed in Secs. IV B and IV C.

Remarkably, the symmetry-broken MKG equations,

Eqs. (9) and (11), allow the probability density interpretation

of its wave function as discussed in Ref. 15 and briefly

repeated below in Sec. IV D. Finally, in Sec. IV E, the same

paper is also referenced to show that at least by a generic cal-

culation, the renormalization in the quantum field theory

may be rendered unnecessary by the 1=c-metric formulation.

A. Symmetry breaking in the 1=c-metric formulation

I will address this in general terms by considering the

familiar KG equation

@l@
lUþ Mc

�h

� �2

U ¼ 0: (45)

This equation comes from the familiar energy-

momentum relation, Eq. (1), which we can also write as

Eq. (16). The second term in Eq. (16) is invariant since both

M and c are invariant. The first term is therefore invariant

which means Eq. (45) is covariant. On the other hand, the

1=c-metric form of Eq. (45)

@l@
lUþ Mc

�hc

� �2

U ¼ 0 (46)

comes from the 1=c-metric form of the energy-momentum

relation, Eq. (2), which may be written as

PlPl ¼
M

c

� �2

c2;

where Pl ¼ ðP0;P1;P2;P3Þ ¼ ðE=c;PiÞ. LHS of the

above is variant since in RHS M=c is variant. Equation (46)

is variant because its c-symmetry is spontaneously broken.

Equation (2), however, is mathematically equivalent to (1)

and its covariance is recovered by simply replacing the mass

term M=c with M. Another possibility is we treat M=c to be

the “proper mass,” just like the “proper time” of the special

relativity. Equation (46) then is covariant in itself. This con-

sideration applies to all 1=c-metric formulation. Advantages

of working with 1=c-metric formulation are stated in Sec. I,

but some additional accounts have been added below in

Sec. IV E.

Note that although in various forms, the energy momen-

tum relations corresponding to the various forms of quantum

wave equations all come from the same energy-momentum

relation, Eq. (1). The various forms of quantum wave equa-

tions and the corresponding forms of the energy-momentum

relation are listed below in Table I.

B. Derivation of MKG by a gauge transformation of KG

Here I show that the MKG may be derived directly from

KG by a local U(1) gauge transformation U ! e6ih U;

h ¼ hðxÞand specializing the result in h ¼ hðtÞ. For direct

comparisons with KG, I work with the c-metric formulation.

We first obtain the second derivative of the above

transformation

@l@lðe6ihUÞ ¼ 6ið@l@lhÞe6ihUþ ið@lhÞið@lhÞe6ihU

6ið@lhÞe6ih@lU6ið@lhÞe6ih@lU

þ e6ih@l@lU:

Plug the above into the KG equation, Eq. (45), we then

get

6ið@l@lhÞU� ð@lhÞð@lhÞU62ið@lhÞ@lU

þ @l@lUþ
Mc

�h

� �2

U ¼ 0:

This is the local U(1) gauge transformed KG. Now suppose

h ¼ hðtÞ ¼ Mc2

�h t ¼ Mc
�h x0, then

@l@lh ¼ @0@0h ¼ 0;

ð@lhÞð@lhÞ ¼ ð@0hÞð@0hÞ ¼
Mc

�h

 !2

;

ð@lhÞ@lU ¼ ð@0hÞ@0U ¼
Mc

�h
@0U ¼

Mc

�h
Il
0@lU:

Hence by cancelling out terms, we arrive at

@l@
lU6i

2Mc

�h
Il
0@lU ¼ 0;

which is just the MKG equation in the c-metric.

We gauge-transformed KG into MKG but broke the

space-time symmetry in the additional process of locally spe-

cializing in h ¼ Mc2

�h t. The mass plays a critical role, causing
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spontaneous symmetry-breaking. We can reverse the proce-

dure to transform MKG to KG to recover the space-time

symmetry.

The relativistic extension of Schr€odinger equation may

naturally entail symmetry-breaking because the Schr€odinger

equation itself is symmetry-broken. In this sense, MKG is a

straightforward extension of the Schr€odinger equation while

KG is a special, covariant version of the former. In both

cases, the global symmetry is still preserved as they all obey

(eventually) the same energy momentum relation, Eq. (1).

This is analogous to the spontaneous symmetry-breaking in

the BEH mechanism,16,17 a feature enabled by the special

field, the Higgs field.

C. Derivation of MDirac by a gauge transformation
of Dirac

Similarly, the MDirac may be derived by a local U(1)

gauge transformation of the Dirac equation according to

W! e6ihW; h ¼ hðxÞ. The first derivative is

@lðe6ihWÞ ¼ 6i@lhe6ihWþ e6ih@lW:

By plugging the above into the Dirac equation, Eq. (31),

we then get

7�hclð@lhÞWþ i�hcl@lW�McW ¼ 0:

They are the local U(1) gauge transformed Dirac equations.

Now suppose h ¼ hðtÞ ¼ Mc
�h x0 ¼ Mc2

�h t, then cl@lh ¼ c0@0h
¼ Mc

�h c0.

We then immediately arrive at

i�hcl@lW� ðc0 þ 1ÞMcW ¼ 0

i�hcl@lWþ ðc0 � 1ÞMcW ¼ 0;

which is the second of MDirac Eq. (30) and the first of

MDirac Eq. (28), respectively. The latter also reads the first

of Eq. (29) if W is decoupled into the spinors, WA and WB.

The Dirac equation has transformed into MDirac equations.

In the original derivation, c0 was introduced for mathemati-

cal convenience ad hoc. Here, it shows up as a result of the

gauge transformation specialized in the time dimension, a

remarkable result. Owing to the second set of factored

energy-momentum equation, Eq. (22), WA and WB in

Eq. (29) may be interchanged. Each set is asymmetric but

the global symmetry is preserved. They eventually obey the

energy-momentum relation, Eq. (1).

D. Probability density of the modified Klein-Gordon
wave function

It is well known that the wave functions of the

Schr€odinger equation allow the probability interpretation,

while those of the KG equation do not. This section is

extracted from Ref. 15, Sec. VII C to show the probability

density of the MKG equation. For two real fields, /1 and /2,

we consider a complex field, U ¼ /þ i/2, with a Lagrangian

L ¼ @lU
	@lUþ iaIl

0U	 @lUð Þ;

of which the Euler-Lagrange equations are

EL1 :@l@
lU ¼ iaIl

0@lU; and

EL2 : @l@
lU	 ¼ �iaIl

0@lU
	:

With a � 2Mc
�hc , EL1 in the above is Eq. (15); EL2 represents

its antiparticle.

Now U	� EL1-U� EL2 gives

@lðU	@lU� U@lU	Þ ¼ ia@0ðU	UÞ:

In the LHS bracket is the Noether current which is con-

served, hence in the RHS U	U must be constant in time.

Thus U	U ¼ /2
1 þ /2

2, being a positive definite constant,

TABLE I. Quantum wave equations and corresponding forms of energy-momentum relation.

In c or 1=c-metric Quantum wave equation Corresponding form of energy-momentum relation

Schr€odinger r2W ¼ �i
2M

�h

@

@t
W; Eq. (5) T ¼ P2

2M
; Eq. (4) or T � P2

2M
; Eq. (6)

KG (c)
@l@

lUþ Mc

�h

� �2

U ¼ 0
E2 ¼ P2c2 þM2c4; Eq. (1)

KG (1=c)
@l@

lUþ Mc

�hc

� �2

U ¼ 0 E2 ¼ P2c2 þ M

c

� �2

c4; Eq. (2)

MKG (c)
@l@

lU ¼ i
2M

�h

@

@t
U; Eq. (9)

T2 þ 2Mc2T ¼ P2c2; Eq. (7)

MKG (1=c)
@l@

lU ¼ i
2M

�hc
@

@t
U; Eq. (11) T2 þ 2Mc2

c
T ¼ P2c2

Dirac(c) i�hcl@lW�McW ¼ 0; Eq. (31) clPl �Mc ¼ 0; Eq. (21)

Dirac(1=c)
i�hcl@lW�

Mc

c
W ¼ 0 clPl �

Mc

c
¼ 0

MDirac 1 (c) 6i�hcl@lWþ c0 � 1
� �

McW ¼ 0 clPl þ c0 � 1
� �

Mc ¼ 0

MDirac 1 (1=c)
6i�hcl@lWþ c0 � 1

� �Mc

c
W ¼ 0; Eq. (28) clPl þ c0 � 1

� �M

c
c ¼ 0; Eq. (25) (concise form)

MDirac 2 (1=c)
6i�hcl@lWþ c0 þ 1

� �Mc

c
W ¼ 0; Eq. (30) clPl þ c0 þ 1

� �M

c
c ¼ 0
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may be interpreted as the probability density (with suitable

normalization.)

E. Renormalization

This section is taken from Ref. 15, Sec. VII D. Renorm-

alization is an essential feature of the quantum field theory.

For instance, the amplitudes of a one-loop Feynman diagram

in Quantum Electrodynamics involve logarithmic divergence

roughly in the formð1
dP

P
¼ lnPj1 ¼ 1:

But in the 1=c-metric formulation, c is embedded in the mass

term represented by M=c and the above integral would then

appear asðMc

dP

P
¼

ðMc

d Mvð Þ
Mv

¼

ðc
dv

v
¼ ln jvjð Þjc þ Const:

Thus, the 1=c-metric formulation potentially removes the c-

divergence a priori and renders renormalization unneces-

sary, at least in the above sense.

V. CONCLUSION

A relativistic extension of the Schr€odinger equation is

shown to provide corrections to both the KG and Dirac equa-

tions. The new equation is the result of applying the quantum

prescriptions to the momentum and the kinetic energy rather

than to the momentum and the total (internal and kinetic)

energy in the relativistic energy-momentum equation. It is

justified since after all it is the kinetic energy that generates

the momentum. The equation is written in both c-metric and

1=c-metric with the latter shown to allow us to avoid infinity

as the velocity of the particle approaches c while providing

us with crucial (speed) information for the particle.

The “Min equation” is shown to reduce to the

Schr€odinger equation in the nonrelativistic limit. It is also

shown to decouple into a modified form of the Dirac

equation.

When applied to a rest particle, the modified Dirac equa-

tion not only describes spin one-half particles but also

presents a vacuum state solution eliminating the need for the

Dirac Sea. This vacuum state solution does not exist in the

Dirac equation. The new particle solutions have the charac-

teristic frequency that is twice that of the Dirac equation. In

the plane wave solutions, the bispinors of the modified Dirac

equation are shown to interact with each other through mass

on the one hand and in the purely electromagnetic manner

on the other. The bispinors of the Dirac equation interact

with each other only through mass.
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