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Abstract: A quantum wave equation that extends the Schrödinger equation with its probability

density into the relativistic regime is explored to obtain the “modified” fields of Klein–Gordon,

Dirac, Proca, and Higgs, respectively. Unlike the original, the modified Dirac field is shown to

include a massless state in addition to the particle and antiparticle states. A gauge transformation

for the modified Klein–Gordon field (MKG) gives scalar bosons that allow transformation

between a massive state and a massless, charged state. It also gives massive vector bosons owing

to the spontaneously broken space–time symmetry, a feature of the MKG, rather than the

Brout–Englert–Higgs mechanism. VC 2018 Physics Essays Publication.

[http://dx.doi.org/10.4006/0836-1398-31.3.265]

Résumé: Une équation d’onde quantique qui étend l’équation de Schrödinger avec sa densité de

probabilité dans le régime relativiste est explorée pour obtenir les champs «modifiés» de Klein-

Gordon, Dirac, Proca et Higgs, respectivement. Contrairement à l’original, le champ de Dirac mod-

ifié est montré pour inclure un état sans masse en plus des états de particule et anti-particule. Une

transformation de jauge pour le champ modifié de Klein-Gordon (MKG) donne des bosons sca-

laires qui permettent la transformation entre un état massif et un état chargé sans masse. Il donne

aussi des bosons vecteurs massifs en raison de la symétrie spatio-temporelle brisée spontanément,

une caractéristique du MKG, plutôt que du mécanisme de Brout-Englert-Higgs (BEH).
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I. INTRODUCTION

The Lagrangian formalism in the quantum field theories

describes the massive scalar boson field by the Lagrangian

of the Klein–Gordon (KG) equation, the spin half fermion

field by the Lagrangian of the Dirac equation, and the mas-

sive vector boson field by the Lagrangian of the Proca equa-

tion, etc. The relativistic quantum wave equations in these

theories use the quantum prescriptions applied to the total

energy, E, which is the sum of the relativistic external kinetic

energy and the internal (rest) energy, and to the relativistic

momentum, P. In general, however, the external kinetic

energy and the internal energy (or mass) originate differently

and may be difficult to describe by a single set of wave equa-

tions. In this paper, I show a novel, kinetic energy-operated

quantum wave equation resolves this fundamental problem

and provides corrections to the known quantum wave equa-

tions, hence to their Lagrangians. I then show some conse-

quences of these corrections to the fields of KG, Dirac,

Proca, and Higgs, respectively, by the use of the gauge trans-

formation formalism.

Gauge theories account for the dynamics of most ele-

mentary particles in the Standard Model. The principle of

local gauge invariance leads to the fundamental quantum

field theories, encompassing the Feynman rules, quantum

electrodynamics, and quantum chromodynamics. It predicts

the existence of the Higgs boson and the mass of the W and

Z bozons, the mediator of weak forces, by spontaneous sym-

metry breaking via the Higgs mechanism. The existence of

the Higgs boson was confirmed by experiment.

With the Higgs mechanism, “mass” is created from

the potential energy transferred from the Higgs field to

fundamental particles. In the present work, transformation

between the mass-equivalent energy (Mc2) and electrical

potential energy (Vq) occurs, which the author refers to

loosely as the transformation between mass and charge. The

relativistic energy-momentum relation is preserved through-

out the spontaneous transformation between mass and

charge.

II. RELATIVISTIC ENERGY-MOMENTUM RELATION

In this and Section III, I extract some prerequisites from

the author’s previous work.1 I can write the relativistic

energy–momentum relation in terms of the total energy, E,

and momentum, P, of a particle2–8

E2 ¼ P2c2 þM2c4; (1)

where c is the speed of light and M is the mass of the

particle.

Now the relativistic kinetic energy, T, may be written as

T ¼ E�Mc2: (2)a)bmin@nubron.com

ISSN 0836-1398 (Print); 2371-2236 (Online)/2018/31(3)/265/9/$25.00 VC 2018 Physics Essays Publication265

PHYSICS ESSAYS 31, 3 (2018)

http://dx.doi.org/10.4006/0836-1398-31.3.265
http://dx.doi.org/10.4006/0836-1398-31.3.265


We can then rewrite the energy-momentum relation,

Eq. (1), in terms of the kinetic energy and momentum,

T2 þ 2Mc2T ¼ P2c2: (3)

If I define E � Mc2, the internal energy (many authors

call this the rest energy) and P � Mt to be the nonrelativis-

tic momentum, I can then call E � cMc2 ¼ cE to be the rela-

tivistic total energy and P ¼ cMt ¼ cP to be the relativistic

momentum where c ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2

c2

q
is the Lorentz factor and

v the velocity of the particle.

The energy-momentum relation, Eq. (1), may then be

rewritten

E2 ¼ P2c2 þ M

c

� �2

c4; (4)

in terms of the internal energy, nonrelativistic momentum,

and mass. I note that Eqs. (1) and (4) are of the same form

except the mass M is replaced with M=c, a relativistic mass

or the mass normalized by the Lorentz factor, with

0 � 1=c � 1. We can say Eq. (1) is written in the c-metric

whereas Eq. (4) is in the 1=c metric. As the speed of the

particle approaches that of light, Eq. (1) may blow up but

Eq. (4) behaves well thanks to the 1=c metric which instead

makes the relativistic mass vanish. It is crucial to have this

metric to characterize a particle. For example, each of the

electron’s orbits in an atom has a particular angular velocity

and radius hence a characteristic c and 1=c values.

In the same way, Eq. (3) may be rewritten as

T2 þ 2Mc2

c
T ¼ P2c2; (5)

where T � T=c. If a quantum wave equation is built based

upon Eq. (4) or Eq. (5), the c-metric counterpart for a

scripted quantity, for instance, T for T or E for E, may eas-

ily be recovered by multiplying c.

III. MODIFIED KLEIN–GORDON EQUATION

The quantum prescriptions are based upon the de

Broglie’s theory6 commonly expressed by P ¼ �hk and

E ¼ �hx (or P ¼ �hk and E ¼ �hx in the 1=c metric) where �h
is the reduced Planck constant, k (or k) is the wave number

and x (or x) is the angular frequency.9 The bold face indi-

cates a three-vector. To isolate the external motion from the

internal motion of a particle, however, I replace the above

total energy with the relativistic kinetic energy, hence I have

P ¼ �hk and T ¼ �hx (or P ¼ �hk and T ¼ �hx in the 1=c
metric). Substituting T by i�h @=@tð Þ and P by i�hr in Eq. (5)

and operating on a scalar function U, I then obtain

i�h
@

@t
U ¼ �h2c

2M
(U; (6)

where ( � 1=c2ð Þ @2=@t2ð Þ � r2, the d’Alembertian, or in

the tensor notation

@l@
lU ¼ ia@0U; (7)

where

a � 2Mc

�hc
: (8)

This is the kinetic energy-operated, relativistic quantum

wave equation in the 1=c metric, an extension of the Schrö-

dinger equation in the free field. Note that if I replace the

d’Alembertian with �r2 and take the nonrelativistic limit of

the relativistic mass M=c! M I recover the Schrödinger

equation. Conversely, the relativistic extension of the Schrö-

dinger equation in the 1=c metric may be simply constructed

by replacing �r2 in the Schrödinger equation with

( � @l@
l and the mass M with the relativistic mass M=c.

We now define a unit four vector

Il ¼ Il
0 þ Il

1 þ Il
2 þ Il

3 ; (9)

where

Il �

1

1

1

1

0
BBB@

1
CCCA; Il

0 �

1

0

0

0

0
BBB@

1
CCCA; Il

1 �

0

1

0

0

0
BBB@

1
CCCA;

Il
2 �

0

0

1

0

0
BBB@

1
CCCA; Il

3 �

0

0

0

1

0
BBB@

1
CCCA:

(10)

When applied to the four derivative, it is understood that

Il@l ¼ @0 � @1 � @2 � @3

Il
0@l ¼ @0; Il

1@l ¼ �@1; etc:
(11)

This allows Eq. (7) to be rewritten in a more maneuver-

able form

@l@
lU ¼ iaIl

0@lU: (12)

The above is the modified Klein–Gordon (MKG) equa-

tion, a new relativistic quantum wave equation for spin zero

massive particles that reduces to the Schrödinger equation in

the nonrelativistic limit, ( � �r2 and c � 1. In the new

approach, it replaces the KG equation

@l@
lUþ Mc

�h

� �2

U ¼ 0: (13)

In the remainder of this paper, I derive the Lagrangian den-

sities providing corrections to the known quantum fields, the

Dirac, KG, Proca, and Higgs. The basis for these corrections is

Eq. (12) providing some interesting consequences including a

spontaneous transformation between mass and charge.

IV. SPIN 1=2 FERMION

A. Dirac Lagrangian

A Dirac Lagrangian may be written as

L ¼ i�hc �Wcl@lW�Mc2 �WW: (14)
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The Euler–Lagrange equations for the above are

EL1: i�hcl@lW�McW ¼ 0; and

EL2: i�hð@lWÞcl þMcW ¼ 0:
(15)

The two Euler–Lagrange equations represent a particle

and its antiparticle, respectively.

A local U(1) gauge transformation may be performed to

Eq. (14) and a term representing photons may be added with-

out affecting the gauge invariance. The result is

L ¼ i�hc �Wcl@lW�Mc2 �WW

� 1

16p
Fl�Fl� � q �WclW

� �
Al ; (16)

which then yields three Euler–Lagrange equations

EL1: i�hcl@lW�McW� qclWAl ¼ 0;

EL2: i�h@lWcl þMcWþ qclWAl ¼ 0;

EL3:
1

4p
@lFl� � q �WclW ¼ 0:

(17)

B. Modified Dirac Lagrangian

The MKG equation, Eq. (12), may be decoupled into the

bispinor equations by deploying the Dirac formalism.10 This

was done in the author’s previous work1 and here I only state

the result.

We define I (or simply 1) to be a 2� 2 unit matrix, and

ri to be 2� 2 Pauli matrices, c0 to be the first of the 4x4

Dirac matrices (the others are ci, i¼ 1,2,3.). By using the first

of the following relationships:

c0 � 1 ¼ 2
0 0

0 �1

� �
;

c0 þ 1 ¼ 2
1 0

0 0

� �
;

(18)

the quantum wave equation describing the spin half fermion

may be written

i�hcl@lWþ c0 � 1
� �Mc

c
W ¼ 0: (19)

This is the kinetic energy-operated, modified Dirac equa-

tion compared to the Dirac equation, EL1 of Eq. (15).

A Lagrangian for the modified Dirac equation, Eq. (19),

may be constructed as

L ¼ i�hc �Wcl@lWþ c0 � 1
� �Mc2

c
�WW (20)

of which the Euler–Lagrange equations are

EL1: i�hcl@lWþ c0 � 1
� �Mc

c
W ¼ 0; and

EL2: � i�hð@lWÞcl þ c0 � 1
� �Mc

c
W ¼ 0:

(21)

The two Euler–Lagrange equations represent a particle

and its antiparticle, respectively. The Euler–Lagrange equa-

tions, Eq. (21), of the modified Dirac Lagrangian closely

match those of the Dirac Lagrangian, Eq. (15), a critical dif-

ference being each of Eq. (21) includes both the massive and

massless interaction between spinors. The EL1 of Eq. (21),

or Eq. (19), may be solved for the particles at rest, with the

results

WA ¼ constant;

WB ¼ e6iMc2

�h=2
tWBð0Þ:

(22)

In addition to the solutions representing the particle and

antiparticle pair (WB in the above, although WA and WB may

be interchanged), the massless interaction leads to a constant

solution which can be set to zero representing a true vacuum

state. This was discussed in Ref. 1. The lack of this solution

by the Dirac equation, Eq. (15), unfortunately has been the

source of the difficulty (e.g., “Dirac sea”11) of an otherwise

extremely successful approach by Dirac. In QED, the elec-

tron and positron are on equal footing but still no true vac-

uum state exists. The vacuum state solution of Eq. (22)

appears to finally remove this difficulty, one of the remark-

able accomplishments of the present approach.

The modified Dirac Lagrangian, Eq. (20), may be gauge-

transformed to

L ¼ i�hc �Wcl@lWþ c0 � 1
� �Mc2

c
�WW

� 1

16p
Fl�Fl� � q �WclW

� �
Al;

(23)

which then yields three Euler–Lagrange equations

EL1: i�hcl@lWþ c0 � 1
� �Mc

c
W� qclWAl ¼ 0;

EL2: i�h@lWcl � c0 � 1
� �Mc

c
Wþ qWclAl ¼ 0;

EL3:
1

4p
@lFl� � q �WclW ¼ 0:

(24)

The Euler–Lagrange equations, Eq. (24), of the modified

Dirac Lagrangian closely match those of the Dirac Lagrang-

ian, Eq. (17), with a critical difference being that the first

two of Eq. (24) include both the massive and massless inter-

actions between spinors. The gauge fields (EL3 of each) are

exactly the same.

V. SCALAR BOSON

A. The Klein–Gordon field

Now let U ¼ /1 þ i/2 and U� ¼ /1 � i/2 where /1 and

/2 are two real fields. We note that the Lagrangian for the

KG equation, Eq. (13), for the complex-valued scalar fields

may be written

L ¼ @lU
�� �
@lUð Þ � Mc

�h

� �2

U�U: (25)
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By treating U� and U to be independent variables, one

obtains the Euler–Lagrangian equations

EL1: @l@
lUþ Mc

�h

� �2

U ¼ 0;

EL2: @l@
lU� þ Mc

�h

� �2

U� ¼ 0:

(26)

A local U(1) gauge transformation via

Dl ! @l þ ibAl for U;

Dl ! @l � ibBl for U�;
(27)

where

b � q

�hc
; (28)

where q is the charge of the particle, and Al and Bl are some

vector fields associated with U and U�, respectively, leads to

the gauge transformed KG Lagrangian

L ¼ @lU
�� �
@lUð Þ � Mc

�h

� �2

U�U

" #

þ � i

8p�hc
Fl�Gl� þ b2 U�Uð ÞBlAl

� �
þ ib @lU

�� �
UAl � U� @lU

� �
Bl

	 

:

(29)

Note that we added a free field, Fl�Gl� , for four-vector

fields, Al and Bl, with their respective field strength tensor

Fl� ¼ @lA� � @�Al;

Gl� ¼ @lB� � @�Bl:
(30)

Equation (29) includes the KG Lagrangian, Eq. (25), as

expected and additional terms showing the interaction

among the scalar fields and the vector fields. The mass term

remains unchanged and this presents a problem in the weak

interactions where a transformation between massive and

massless gauge vector field is necessary.12,13

Since U and U� are treated to be independent of each

other, so are Bl and Al. If Bl ¼ Al, then Eq. (27) specifies

that U and U� be made locally invariant in the opposite rota-

tion, i.e., U! eihU and U� ! e�ihU�, respectively, where h
is any real number. On the other hand, if Bl ¼ �Al, Eq. (27)

specifies that both U and U� be made locally invariant in the

same rotation, i.e., by U! eihU and U� ! eihU�,
respectively.

In the former case (Bl ¼ Al), by the use of Eq. (26) and

denoting the conserved Noether current, jl ¼ i @lU
�� �

U�
	

U� @lU
� �

� Eq. (29) may be written

L ¼ @lU
�� �
@lUð Þ � Mc

�h

� �2

U�U

" #

þ � i

8p�hc
Fl�Fl� þ b2 U�Uð ÞAlAl þ bjlAl

� �
: (31)

The first bracket reproduces Eq. (25). The second

bracket includes terms related to the Proca and Maxwell

equations but remains massless.

In the latter case (Bl ¼ �Al), since @lU
�� �

Uþ
U� @lU
� �

¼ @l U�Uð Þ Eq. (29) becomes

L ¼ @lU
�� �
@lUð Þ � Mc

�h

� �2

U�U

" #

þ i

8p�hc
Fl�Fl� þ b2 U�Uð ÞAlAl þ ib@l U�Uð ÞAl

� �
:

(32)

The second bracket remains massless. If @l U�Uð Þ van-

ishes, then U�U is constant and the second bracket further

simplifies to look like the Proca equation with the mass term

replaced by a current term. The gauge transformation of the

KG Lagrangian fails to produce a massive gauge vector field.

In the following, the gauge transformation of the MKG

Lagrangian is shown to allow such transformation to occur

without resorting to the Higgs field.

The above gauge-transformed KG field will be refer-

enced in the following (Sec. V.B and Sec. VI) sections and

compared to the gauge-transformed, MKG field.

B. The modified Klein–Gordon field

For the MKG equation, Eq. (12), one can write a

Lagrangian for the complex-valued scalar fields,

L ¼ @lU
�@lUþ iaIl

0U� @lU
� �

�La (33)

of which the Euler–Lagrange equations are

EL1: @l@
lU ¼ iaIl

0@lU; and

EL2: @l@
lU� ¼ �iaIl

0@lU
�:

(34)

EL1 in the above is the same as Eq. (12). EL2 represents

its antiparticle. The MKG Lagrangian, Eq. (33), describes a

massive, scalar, spin-zero boson with mass

M ¼ ca
2

� � �h

c
(35)

as back-calculated from Eq. (8) and carried by the term

U�ð@0UÞ.
By a local U(1) gauge transformation for Eq. (33) via

Eq. (27) and by inserting a free field, Fl�Gl� , we obtain a

complete, gauge-transformed Lagrangian for the MKG

equation

L ¼ @lU
�@lUþ iaIl

0U� @lU
� �	 


þ 2i

�hc
� 1

16p
Fl�Gl� þ i

q

2
U�UðaIl

0 � bBlÞAl

� �
þ ib ð@lU�ÞUAl � U�ð@lUÞBl

	 

; (36)

where a and b represent mass and charge, respectively.

Equation (36) combines a massive scalar field in the first

square bracket, a massive vector field in the second square

268 Physics Essays 31, 3 (2018)



bracket, and the interaction of the scalar and the vector fields

in the third square bracket.

From the second and the third term of Eq. (36), one can

define a vector “potential” field

L ¼ � 1

16p
Fl�Gl� þ i

q

2
U�UðaIl

0 � bBlÞAl

þ q

2
ð@lU�ÞUAl � U�ð@lUÞBl
	 


: (37)

C. Massive and massless scalar bosons

It is interesting to note that when

bBl ¼ aIl
0 ; (38)

i.e., Bl ¼ ð2Mc2=qc; 0; 0; 0Þ, (ignoring the free field) the sec-

ond term of Eq. (36) vanishes and the first and the third terms

merge so that it now reads

L ¼ @lU
�@lUþ ibAlð@lU

�ÞU �Lb: (39)

This represents a massless scalar boson with charge q in

the vector field, Al. The Euler–Lagrange equations of the

above are

EL1: @l@
lU ¼ �ibAl@lU; and

EL2: @l@
lU� ¼ ibAl@lU

�:
(40)

Note that one can always select a particular Bl indepen-

dent of Al field equation without losing generality. Hence if

I choose Bl ¼ V; 0; 0; 0ð Þ with V ¼ 2Mc2=qc, where V is a

scalar potential, then the massive scalar boson, Eq. (33),

transforms into a massless scalar boson, Eq. (39). I will bring

c to the left-hand side and rewrite this condition to note that

cV is the c-metric potential

cV ¼ 2Mc2

q
: (41)

Conversely, a massless scalar boson, Eq. (39) may be

shown to transform to a massive scalar boson, Eq. (33) under

certain conditions. For instance, if Bl ¼ Al then a gauge

transformation via

Dl ! @l � iaIl
0 for U;

Dl ! @l þ iaIl
0 for U�;

(42)

under a condition similar to Eq. (38)

bAl ¼ aIl
0 (43)

fulfills such transformation. If further I choose Al ¼
V; 0; 0; 0ð Þ with V, a scalar potential, I then get

M ¼ cV

2

� �
q

c2
(44)

and one can say the massless boson, Eq. (39), acquired mass

M from charge q. Here, the scalar bosons transform between

a massive state, Eq. (33), and a massless, charged state,

Eq. (39), whenever the three-vector potential vanishes.

VI. VECTOR BOSON

A. Massless gauge vector field

We can obtain a massless gauge vector field from

Eq. (37) under certain conditions: for instance, if the vector

fields satisfy Bl ¼ Al, it then reads

L ¼ � 1

16p
Fl�Fl� þ i

q

2
U�UðaIl

0 � bAlÞAl

þ q

2
ð@lU�ÞU� U�ð@lUÞ½ �Al: (45)

One can take the divergence of the square bracket term

and use Eq. (34) to find

@l ð@lU�ÞU� U�ð@lUÞ½ � ¼ �iaIl
0@lðU�UÞ; (46)

hence within a constant

ð@lU�ÞU� U�ð@lUÞ ¼ �iaIl
0 ðU�UÞ: (47)

The third term of Eq. (45) then erases the mass (a) in the

second term to result in

L ¼ � 1

16p
Fl�Fl� � i

q

2
U�UbAlAl: (48)

If in addition U�U ¼ /2
1 þ /2

2 ¼ K 6¼ 0(a nonzero con-

stant), i.e., along a circle in /1;/2 plane, it can be absorbed

by Al and Eq. (45) finally reduces to

L ¼ � 1

16p
Fl�Fl� �

i

2
qbAlAl: (49)

This is a massless gauge boson field, or a modified mass-

less Proca Lagrangian, of which the Euler–Lagrange equa-

tion is

EL1:
1

4p
@lFl� � iqbA� ¼ 0; (50)

where qb ¼ q2= �hcð Þ.
With Eq. (49), the complete Lagrangian, Eq. (36), now

reduces to

L ¼La þ
2i

�hc
� 1

16p
Fl�Fl� �

i

2
qbAlAl

� �
: (51)

B. Massive gauge vector field

If Bl ¼ �Al, Eq. (37) reads

L ¼ 1

16p
Fl�Fl� þ i

q

2
U�UðaIl

0 þ bAlÞAl

þ q

2
@lðU�UÞAl; or

L ¼ 1

16p
Gl�Gl�

� i
q

2
U�UðaIl

0 � bBlÞBl �
q

2
@lðU�UÞBl:

(52)
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The above simplifies if the scalar field satisfies

@lðU�UÞ ¼ 0 and U�U ¼ /2
1 þ /2

2 ¼ K 6¼ 0 (a nonzero con-

stant). In this case, K can be absorbed by the vector field and

the above reduces to

L ¼ 1

16p
Fl�Fl� þ i

q

2
ðaIl

0 þ bAlÞAl; or

L ¼ 1

16p
Gl�Gl� � i

q

2
ðaIl

0 � bBlÞBl;

(53)

which may be called modified Proca Lagrangians.

The Euler–Lagrange equations for Eq. (53)

EL1:
1

4p
@lFl� � iq

a
2

I�0 þ bA�
� �

¼ 0;

EL2:
1

4p
@lGl� þ iq

a
2

I�0 � bB�
� �

¼ 0;

(54)

are the modified Proca equations with a relativistic mass

M=c ¼ a�h= 2cð Þ.
With the first of Eq. (53), the complete Lagrangian,

Eq. (36), now reads

L ¼La þ
2i

�hc

1

16p
Fl�Fl� þ i

q

2
aIl

0 þ bAl
� �

Al

� �
: (55)

In contrast to Eq. (51), the above now includes a mass

term in the gauge field and may be called a modified Higgs

field. The first term, La, in the above then defines a particular

scalar boson which may be called the modified Higgs boson.

C. Transformation between the massless and massive
states of the gauge fields

It is interesting to note that the scalar field condition

U�U ¼ /2
1 þ /2

2 ¼ K (56)

necessarily requires @l U�Uð Þ ¼ 0 and define a circle in

/1;/2 plane. The massless vector field, Eq. (49), and massive

vector field, Eq. (53), both arise when K 6¼ 0. This compares

to the condition by which the Higgs boson field arises via the

spontaneous symmetry breaking of the Mexican hat or wine

bottle potential with stable local minima present along the

circle.

In the present theory, the transformations between the

massless state, Eq. (49), and massive state, Eq. (53), of the

gauge boson occur between the two admissible states of local

gauge invariance: (1) Bl ¼ Al, i.e., U and U� be made

locally invariant in the opposite rotation, U! eihU and

U� ! e�ihU�, respectively, and (2) Bl ¼ �Al, i.e., both

U and U� be made locally invariant in the same rotation,

U! eihU and U� ! eihU�, respectively.

D. Comparison with the Higgs field

For comparisons, the Proca Lagrangian may be written

as

L ¼ � 1

16p
Fl�Fl� þ

1

8p
Mc

�h

� �2

A�A� (57)

with the Euler–Lagrange equation

@lFl� þ Mc

�h

� �2

A� ¼ 0: (58)

According to the Proca Lagrangian, Eq. (57), mass is

carried by the quadratic term of the vector field A� and may

be created by a mechanism known as Brout–Englert–Higgs

(BEH) mechanism which creates the Higgs boson. For exam-

ple, consider a Lagrangian with a self-interaction potential

energy terms12–14

L ¼ 1

2
@lU

�@lUþ 1

2
l2U�U� 1

4
k2ðU�UÞ2; (59)

where l and k are real constants. By defining g � /1 � l=k,

a gauge transformed and spontaneously symmetry-broken

version of the above may be written12

L ¼ 1

2
@lg
� �

@lgð Þ � lð Þ2g2

� �

þ � 1

16p
Fl�Fl� þ

1

2

q

�hc

l
k

� �2

AlAl

� �

þ


l
k

q

�hc

� �2

gAlAl þ 1

2

q

�hc

� �2

g2AlAl

� klg3 � 1

4
k2g4

�
þ l2

2k

� �2

; (60)

where the first square bracket represents the Higgs scalar

boson field with mass

MS ¼
ffiffiffi
2
p

l
� � �h

c
; (61)

and the second square bracket a gauge boson field with mass

MA ¼ 2
ffiffiffi
p
p l

k

� � q

c2
: (62)

Its Euler–Lagrange equations are

EL1: @l@
lg�l2g

	 

�b2 l

k
þg

� �
AlAlþ3klg2þk2g3¼0;

EL2: � 1

4p
@lFl�� b

l
k

� �2

A�
� �

�b2 2l
k
þg2

� �
A�¼0:

(63)

The square bracket term of the above EL1 is a KG equa-

tion defining the Higgs boson. The square bracket term of

the above EL2 is a Proca equation describing a massive

gauge boson.

Equations (36) and (60) are similar in their mathematical

structure, combining a massive scalar boson field and a mas-

sive gauge boson field. Remarkably, Eq. (36) includes these

fields as a result of the local U(1) gauge transformation of

the MKG equation, Eq. (33), directly without introducing an

arbitrary symmetry breaking process via Eq. (59). The mass

of the scalar boson given in Eq. (35) will be identical with

that of Eq. (61) if
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ca
2
¼

ffiffiffi
2
p

l (64)

and the mass of the gauge boson given in Eq. (44) will be

identical with that of Eq. (62) if

cV

2
¼ 2

ffiffiffi
p
p l

k
: (65)

The Higgs scalar boson has been found

experimentally.15–25 It is possible that the modified Higgs

boson in Eq. (55) is identical to the Higgs boson in Eq. (60),

even though we arrive at them in quite different ways. It is

because only one Higgs scalar boson has been found so far

experimentally, but it will be interesting to see if the modi-

fied scalar boson may also be found experimentally that is

not identical to the Higgs boson. Finally, it should be noted

that the present theory leaves open a possible presence of

entirely different or multiple “modified Higgs bosons” since

it does not require local minima of the potential for the mass

to be “created.”

VII. DISCUSSIONS

This section is added after the initial submission of the

manuscript to address some of the reviewers’ comments. In

this section, “(M)KG” may stand for either “(modified)

Klein–Gordon” or “the (modified) Klein–Gordon equation.”

A. The Hamiltonian

This paper concerns the Lagrangian description of the

elementary particles. The Hamiltonian description is particu-

larly useful for the (second) quantization of the fields, and

may be derived from the Lagrangian. For the MKG Lagrang-

ian L, Eq. (33), the canonical conjugate fields may be written

p xð Þ ¼ @L

@ @0Uð Þ ¼ @0U
� þ iaU�;

p� xð Þ ¼ @L

@ @0U�ð Þ ¼ @0U:

We consider U and p and their Hermitian adjoints,

U† and p†, respectively, to be field operators and write the

Hamiltonian for MKG (without showing the details of the

calculation)

H ¼
ð

d3rH r; tð Þ;

where r � xi and the Hamiltonian density is

H xð Þ ¼ p @0U
� �

þ @0U†
� �

p† �L

¼ pp† þ rU†
� �

	 rUð Þ � iaU†p†:

The commutator for an observable Q (or the operator,

U; p;U†; or p†) with the Hamiltonian may then be shown to

take the expected form

Q;H½ � ¼ i�h
@

@t
Q � i�hc@0Q:

B. Lorentz covariance

The presence of the first order time derivative, @=@t,
puts time on an unequal footing in the MKG equation

which then violates Lorentz covariance, similar to the

Schrödinger equation. The modified Dirac equation which

derives from MKG recovers covariance by virtue of the

Dirac spinors. Both MKG and KG obey the relativistic

energy-momentum relation, however, as MKG, Eq. (12),

may be converted back to the kinetic energy–momentum

relation, Eq. (3), which is equivalent to the total

energy–momentum relation, Eq. (1).

MKG may be viewed as symmetry-broken form of KG.

To see this, we write the Schrödinger equation for a free par-

ticle as (by separating the space and time variables)

i�h
@

@t
W r; tð Þ ¼ � �h2

2M
r2W r; tð Þ:

Let W r; tð Þ ¼ W rð Þe�iT�ht
; by carrying out the time deriva-

tives we then get a time-independent Schrödinger equation

� �h2

2M
r2W rð Þ � � �h2

2M
@i@

iW rð Þ ¼ TW rð Þ:

For direct comparisons, the MKG, Eq. (6), may be writ-

ten in c-metric

i�h
@

@t
U r; tð Þ ¼ �h2

2M
(U r; tð Þ � �h2

2M
@0@

0 � @i@
i

� �
U r; tð Þ:

Let U r; tð Þ ¼ U rð Þe�iT�ht; by carrying out the time deriva-

tives we then get

� �h2

2M
@i@

iU rð Þ ¼ 1

2Mc2
T2 þ 2Mc2T
� �

U rð Þ or

� �h2

2M
@i@

iU rð Þ ¼ P2

2M
U rð Þ

;

where we used the kinetic energy-momentum equation,

T2 þ 2Mc2T ¼ P2c2. For v
 c, T ffi P2

2M, hence the time-

independent MKG equation reduces to the time-independent

Schrödinger equation.

On the other hand, for KG, EL1 of Eq. (26)

@l@
lUðr; tÞ þ Mc

�h

� �2

Uðr; tÞ ¼ 0;

let U r; tð Þ ¼ U rð Þe�iE�ht; by carrying out the time derivatives

we then get

� E2

c2�h2
U rð Þ � @i@

iU rð Þ þM2c2

�h2
U rð Þ ¼ 0 or

� �h2

2M
@i@

iU rð Þ ¼ P2

2M
U rð Þ;

where we used the total energy-momentum equation,

E2 �M2c4 ¼ P2c2. For v
 c, this again reduces to the

time-independent Schrödinger equation. Thus in the time-

independent nonrelativistic limit, both KG and MKG reduce

to the time-independent Schrödinger equation. Note,
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however, the assumed time-dependencies for KG and MKG

are e�iE�ht and e�iT�htð¼ e�iE�Mc2

�h t ¼ e�iE�hteiMc2

�h tÞ, respectively. The

relationship between the KG and MKG wave functions then

is

UMKG r; tð Þ ¼ UKG r; tð ÞeiMc2

�h t:

Let Mc2

�h ¼ x, an angular velocity, then eiMc2

�h t ¼ eixt ¼ eih,

where h ¼ h tð Þ is a function of time only. This makes the

transformation from KG to MKG to break the space–time

symmetry. A spontaneous symmetry breaking is already

built into the MKG equation.

The Higgs mechanism introduces a symmetry breaking

by an arbitrary Lagrangian (Higgs) field and then asserts the

symmetry breaking to be a necessary condition for the crea-

tion of mass. As seen in the above, however, the mass is

already in the system. It just caused a transformation that

breaks the space–time symmetry.

C. Probability density of the modified Klein–Gordon
wave function

To show the probability density of the MKG equation,

recall the Euler–Lagrange equations, Eq. (34). Now U� x

EL1�U x EL2 gives

@lðU�@lU� U@lU�Þ ¼ ia@0ðU�UÞ;

which is just Eq. (46). In the bracket of the left hand side is

the Noether current which will be conserved as long as U�U
of the right hand side is a constant in time. Thus U�U, being a

positive definite constant, may be interpreted as the probabil-

ity density (with suitable normalization). Similar calculations

for the KG equation do not allow the probability density inter-

pretation of the wave function. But it was shown in the above

Section VII.B that MKG is a symmetry-broken version of the

KG, hence the new theory (MKG) accommodates the old the-

ory (KG) as a special case rather than contradicting it.

D. Renormalization

Renormalization is an essential feature of the quantum

field theory. For instance, the amplitudes of a one-loop

Feynman diagram in quantum electrodynamics involve loga-

rithmic divergence roughly in the formð1 dP

P
¼ ln Pj1 ¼ 1:

The procedure of removing the unobservable divergence

from the upper end is called renormalization. Although

extensively studied, it is still considered conceptually

unsatisfactory.

The above, however, may be rewritten

ð1
dP

P
¼
ð1

d cMvð Þ
cMv

¼
ð1

dc
c
þ
ðc

dv

v
¼ ln cð Þj1 þ ln vj jð Þjc;

where c � 1 and v � c. It is clear that the upper bound

divergence is caused by the c-integration. But in the 1=c

metric formulation, c is embedded in the mass term repre-

sented by M=c and the above integral would then show up asðMc dP

P
¼
ðMc d Mvð Þ

Mv
¼
ðc dv

v
¼ ln vj jð Þjc þ Const:

The 1=c metric formulation pays off by removing the c-

divergence a priori and rendering renormalization unneces-

sary, at least in the above sense. Further accounts of the

effect of the 1=c metric formulation to the renormalization

procedure are warranted.

VIII. CONCLUSION

The KG equation is obtained by applying the quantum

prescriptions to the momentum and to the total energy in the

relativistic energy-momentum relation. When we apply a

quantum prescription to the total energy that is the sum of

the internal (rest) energy and the kinetic energy, we are

attempting to describe the two different sources of energy by

a single set of wave equations.

This paper describes a novel approach to resolve this

fundamental problem. A kinetic energy-operation (instead of

the total energy-operation) is used to obtain a MKG equa-

tion, from which the modified quantum fields are then

derived: MKG field for a massive scalar boson, modified

Dirac field for a spin half fermion, modified Proca field for a

massive vector boson, and modified Higgs field for a massive

scalar boson and massive gauge vector boson.

The main mathematical results are summarized in the

Appendix. The modified Dirac field thus derived closely

matches the Dirac field, a crucial difference being that for-

mer includes both the massive and massless interaction

between spinors. The equations of motion then yield the par-

ticles-at-rest solutions that include a vacuum state. The origi-

nal Dirac equation lacks this feature, which led Dirac to

hypothesize existence of the Dirac sea. It is clear that this

difficulty arose because the KG equation upon which Dirac

equation is based upon uses the total energy as the basis of

quantum prescription. This breakthrough by the new

approach lends support to other results that follow.

The MKG field features scalar bosons in massive state

and a massless, charged state transforming spontaneously to

each other when the three-vector potential vanishes. The

MKG Lagrangian is shown to yield both the modified Proca

field and the modified Higgs field directly by a local U(1)

gauge transformation.

The Higgs and modified Higgs fields are similar in their

mathematical structure combining a massive scalar boson

and a massive gauge boson. Remarkably, however, the modi-

fied Higgs field includes these bosons as a result of the local

U(1) gauge transformation of the MKG Lagrangian without

introducing an additional symmetry breaking process.

It is probable that the scalar bosons in both fields (Higgs

and modified Higgs) are only the same, even though we

arrive at them in quite different ways. It is because only one

Higgs scalar boson has been found so far experimentally, but

it will be interesting to see if the modified Higgs scalar boson

may also be found experimentally that is not the same as the
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Higgs boson. Finally, it should be noted that the present the-

ory leaves open a possible presence of entirely different or

multiple modified Higgs bosons since it does not require

local minima of the potential for the mass to be created.
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APPENDIX: LAGRANGIAN DENSITY FOR QUANTUM FIELDS—STANDARD FORMULATION VERSUS MODIFIED

Standard formulation Modified

Massive scalar boson

(Klein–Gordon versus

modified)

L ¼ @lU
�� �
@lUð Þ � Mc

�h

� �2

U�U L ¼ @lU
�@lUþ iaIl

0U� @lU
� �

; a � 2Mc

�hc

Massless scalar boson

(Goldstone versus modified)

L ¼ @lU
�@lU L ¼ @lU

�@lUþ ibAlð@lU
�ÞU; b � q

�hc

Spin 1=2 Fermion (Dirac

versus modified)
L ¼ i�hc �Wcl@lW�Mc2 �WW

L ¼ i�hc �Wcl@lWþ c0 � 1ð ÞMc2

c
�WW

Spin 1=2 Fermion + massless

gauge field (Dirac versus

modified)

L ¼ i�hc �Wcl@lW�Mc2 �WW

� 1

16p
Fl�Fl� � q �WclW

� �
Al

L ¼ i�hc �Wcl@lWþ c0 � 1
� �Mc2

c
�WW

� 1

16p
Fl�Fl� � q �WclW

� �
Al

Massive gauge boson

(Proca versus modified) L ¼ � 1

16p
Fl�Fl� þ

1

8p
Mc

�h

� �2

A�A� L ¼ 1

16p
Fl�Fl� þ i

q

2
ðaIl

0 þ bAlÞAl

Massless gauge boson

(Massless Proca versus

modified)

L ¼ � 1

16p
Fl�Fl� L ¼ � 1

16p
Fl�Fl� � i

q

2
bAlAl

Higgs field (U4) versus

modified
L ¼ 1

2
@lU

�@lUþ 1
2
l2U�U� 1

4
k2ðU�UÞ2 L ¼ @lU

�@lUþ iaIl
0 U� @lU

� �
Massive scalar boson +

massive gauge boson

(Higgs versus modified)

L ¼ 1

2
@lg
� �

@lgð Þ � lð Þ2g2

� �

þ � 1

16p
Fl�Fl� þ

1

2

q

�hc

l
k

� �2

AlAl

� �

þ l
k

q

�hc

� �2

gAlAl þ 1

2

q

�hc

� �2

g2AlAl � klg3 � 1

4
k2g4

 �
þ l2

2k

� �2

L ¼ @lU
�@lUþ iaIl

0 U�@lU
� �	 


þ 2i

�hc

1

16p
Fl�Fl� þ i

q

2
aIl

0 þ bAl
� �

Al

� �
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