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Abstract An analysis according to the principles of special and general relativity and less

restrictive Newtonian gravity proves the dynamic effects to be substantial for the expanding

universe. With the resulting dynamic critical density, typically greater than the standard critical

density, I am able to identify the hypothetical cold dark matter (CDM) as being an artifact of

the Friedmann–Robertson–Walker equation that is insufficient to describe the dynamic effects.

With the included special-relativistic dynamic effects, I can now predict the cosmic data with

two parameters, matter and the cosmological constant, without the CDM at least on a large scale.
VC 2020 Physics Essays Publication. [http://dx.doi.org/10.4006/0836-1398-33.2.200]

R�esum�e: Une analyse selon les principes de la relativit�e restreinte et g�en�erale et de la gravit�e
newtonienne moins restrictive prouve que les effets dynamiques sont substantiels pour l’univers en

expansion. Avec la densit�e critique dynamique r�esultante, g�en�eralement sup�erieure �a la densit�e
critique standard, je suis en mesure d’identifier l’hypoth�etique matière sombre froide comme �etant

un artefact de l’�equation de Friedmann-Robertson-Walker qui est insuffisant pour d�ecrire les effets

dynamiques. Avec les effets dynamiques relativistes sp�eciaux inclus, je peux maintenant pr�edire

les donn�ees cosmiques avec deux paramètres, la matière et la constante cosmologique, sans la

matière sombre froide au moins �a grande �echelle.

Key words: Space; Time; Element; Gravity; Cosmological Constant; Dark Energy; Dark Matter; Special Relativity; General

Relativity; Dynamics.

I. INTRODUCTION—THE STANDARD COSMOLOGICAL
MODEL

The standard cosmological model describes the universe

by the Friedmann (or Friedmann–Robertson–Walker, herein-

after FRW) equation1–4

_a

a

� �2

¼ 8pG

3
qu � j

c2

a2
; (1)

where qu is the average mass density of the universe, j is

a constant related to the curvature, and a ¼ aðtÞ is a

dimensionless scale factor with the present epoch value,

a0 ¼ aðt0Þ, subscript 0 denoting the present (epoch) value.

Note that Eq. (1) remains the same if substitution is made,

a! a=k and j! j=k2, with both a and any parameter, k,

having the dimension of length. Henceforth in this work, we

shall mean by aðtÞ the radius of the universe unless specifi-

cally mentioned otherwise.

It is convenient to introduce the density parameters and

the critical density of the present epoch

Xi � qi=qcrit; (2)

and

qcrit ¼ 3H2
0=ð8pGÞ; (3)

respectively, where according to the KCDM model, i repre-

sents one of b; c; rad; j; and K for baryon, cold dark matter

(CDM), radiation, curvature, and the cosmological constant.

The FRW equation may then be written

HðaÞ
H0

� �2

¼ Xm
a0

a

� �3

þ Xrad

a0

a

� �4

þ Xj
a0

a

� �2

þ XK;

(4)

where HðaÞ ¼ _a=a is the Hubble parameter with its present

value, H0 ¼ _a0=a0, and Xm ¼ Xb þ Xc. In the following, we

shall ignore the radiation as its contribution is small. Later

when we need to distinguish the critical density, Eq. (3),

from the more general dynamic critical density (DCD),

the former may be called the standard critical density (SCD)

and denoted by putting a bar as in �Xi ¼ qi=�qcrit and

�qcrit ¼ 3H2
0=ð8pGÞ.

The FRW equation describes a slowly expanding uni-

verse as a nonrelativistic limit of the general theory of relativ-

ity (GR), derivable as well from the Newton’s law of gravity.

The observations show, however, the radial velocity of the

mass content of the expanding universe gets faster with the

increased distance from an observer until on the edge of the

universe it nears the speed of the light, or even exceeds that

according to the standard cosmological model. In this paper, I

extend the FRW equation to include the effects of special-

relativistic dynamics according to both the extended Newto-

nian gravity (Sections III–VI) and general relativity (Section

VII). I then discuss the implications of these results for the

expanding universe in Sections VIII and IX.a)bmin@nubron.com
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II. AN ELEMENTAL SPACETIME, COSMOLOGICAL
CONSTANT, AND DARK ENERGY

The author suggested the existence of photon elements

in one5 of his previous articles. This allowed one to define a

system of fundamental units,6 which then suggests that our

spacetime is elemental. The photon element units derivable

from the elemental spacetime have been shown to be

compatible with Einstein’s special theory of relativity (SR;

hereinafter SR may also stand for special relativity or

special-relativistic).

This further suggests that our space is filled with certain

elements of the size of the photon element units and which is

the medium of electromagnetic wave propagation. We shall

call such elements “c� elements” having the dimensions

(on the order) of the photon elements units. We know a lot

about the space that is filled with them. We call it the

“vacuum,” the medium for the electromagnetic wave propa-

gation. It is the quantum field, because it is the only space

we have. It must have the energy associated with the

“cosmological constant,” the only vacuum energy allowed to

exist according to the GR at least in the universal sense.

We also know what it is not. It is not the “ether”

space, an absolute space that is not allowed by the SR. The

c-element space is not an absolute space even though it is

a medium of light propagation. Like any other matter, it

must obey the special and general theories of relativity.

Does the c-element space violate the Michelson–Morley

experiment? Below is a short account arguing why it does

not.

The SR assumes from the outset (a) the principle of rela-

tivity and (b) constancy of the speed of light, c, in all inertial

frames. Aharoni,7 however, showed that (b) results from (a):

i.e., a “signal” velocity common to all inertial frames of ref-

erence must exist as a result of the principal of relativity. An

inertial frame that is stationary relative to the c-element

space is just one of the infinite numbers of the inertial

frames. In this stationary inertial frame, the signal velocity

must be the velocity of light. This velocity of light must then

be the same in all inertial frames according to Aharoni’s

analysis. Michelson–Morley’s experiment is consistent with

this existence of the signal velocity and consequently consis-

tent with the existence of the c-element space. I do not need

any additional analysis to conclude that the c-element space

does not violate the SR.

If we apply an Occam’s razor to the c-element space, in

this paper one needs only one aspect of it: The nonzero mass

of c-elements allowing the Newton’s two-body gravitational

law applicable anywhere in the space. It also fits with the

perfect-fluid model of materials that gives the stress-energy

content, or the negative pressure, in the presence of the cos-

mological constant in GR. The name “c-element” stems

from the author’s original conjecture6 that the size of such

fundamental element, if exist, should manifest itself as the

wavelength of the highest energy electromagnetic waves or

c-ray8–12 and should be observable.

By defining the mass density of c-elements to be

qc ¼ qvac=c2, where qvac is the vacuum energy density, the

cosmological constant, K, may then be expressed as13,14

K ¼ 8pGqvac

c4
¼

8pGqc

c2
; (5)

where G is the gravitational constant. K has the dimension,

(1/m2). Thus, in this paper, I assume the mass density of the

c-elements, the cosmological constant, and the dark energy

all refer the same thing in various units.

III. ASYMPTOTIC SEPARATION OF THE
GRAVITATIONAL AND SPECIAL-RELATIVISTIC
EFFECTS IN THE SCHWARZSCHILD METRIC

The Schwarzschild metric15 may be written for a

spherical body of mass, M, in the coordinates, ðt; r; h;/Þ
with dX2 ¼ dh2 þ sin h2d/2,

c2ds2 ¼ 1� 2GM

c2r

� �
c2dt2 � 1� 2GM

c2r

� ��1

dr2

� r2dX2; (6)

where s is the proper time. The term in the bracket,

2GM=ðc2rÞ, may be called a gravity factor; Eq. (6) reduces

to the Minkowski spacetime metric if the gravity factor

vanishes. To see the effect of a small gravity factor from the

SR point of view, we consider a transformation of Eq. (6)

from a coordinate system ðt; rÞ to ðt0; r0Þ. By ignoring the

angular term and setting c ¼ 1 (I will bring c back whenever

more clarity is needed), the invariant of the transformation

gives

ds2 ¼ c�2
g dt2 � c2

gdr2 ¼ c�2
g dt0

2 � c2
gdr0

2
; (7)

where we define

cg � 1� 2GM

c2r

� ��1=2

: (8)

Since the gravity factor is Lorentz scalar,b) cg is Lorentz sca-

lar. We now look for the transformation of the type

dt0 ¼ csðdt� bdrÞ; dr0 ¼ csðdr � bdtÞ; (9)

where b ¼ _r=c and cs is to be determined. By the use of

Eq. (9), Eq. (7) may be written

c�2
g dt2 � c2

gdr2 ¼ c�2
g c2

s ðdt� bdrÞ2 � c2
gc

2
s ðdr � bdtÞ2:

(10)

By rearranging the terms, we can see this equation will hold

approximately true if

b)We note that the gravity factor, 2GM=ðc2rÞ � rs=r, where rs is Schwarzs-

child radius, is a non-dimensional Lorentz scalar. Under a Lorentz transfor-

mation, both rs and r contracts rs ! rs=cs and r ! r=cs where cs denotes

the SR Lorentz factor, so the metric remains covariant. In a paper,6

the author discussed the Lorentz covariance of units and universal

constants which may be shown to be consistent with this result. The (length

contracted) proper value of the Schwarzschild radius is then

rs ! rs=cs ¼ 2GM=ðcsc
2Þ, suggesting for a photon, rs ! 0. The implication

warrants further investigation, especially regarding the black holes, but is

beyond the scope of this paper.
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1

c2
s

¼ 1� c4
gb

2 � 1� b2; c4
g � 1: (11)

This shows the interaction of the gravity and the SR as

the gravity factor becomes small, r � rs ¼ 2GM=c2. Here,

the transformation is asymptotically dominated by the SR

and the Newton’s gravitational law may be extended to

include the SR effects by simply applying the SR Lorentz

factor. It is as if the gravitation and the special relativity are

independent of each other in an inertial frame.

IV. SPECIAL-RELATIVISTIC EXTENSION FOR THE
NEWTON’S LAW OF GRAVITY

Consider the Newtonian gravitational law between two

point bodies, denoted here as B0 (where an observer is

located, i.e., it is stationary) and B1 (moving in the x direc-

tion with a velocity, v) having masses, M0 and M1, respec-

tively, separated by the distance vector,
~
rðtÞ. Equation (6)

suggests the gravitational force between them at a given

instant isc)

~
F ¼ G

M0M1

r2
c2êr; where c ¼ 1� ðv=cÞ2

h i�1=2

; (12)

where êr is the unit vector in the direction of
~
rðtÞ, and v is

the velocity of B1 moving in the x direction. Since
~
rðtÞ is a

function of time, the force vector is also a function of time.

Equation (12) is equivalent to the interaction of B0 with the

gravitational potential of B1

UðrÞ ¼ �GM1

r
c; c ¼ 1� ðv=cÞ2

h i�1=2

: (13)

For the expanding universe, every object outside B0 moves

away radially with no relative angular velocity, hence v ¼ _r
and c ¼ ½1� ð _r=cÞ2��1=2

. Furthermore, the universe in large

scales is assumed to be isotropic and homogeneous. This

allows an assumption of spherical symmetry with B0 at the

center, for example, to calculate the total gravitational force

exerted by every mass of the universe by the use of the

measured mass density of the universe, which is simply a

collection of two-body problems summed or integrated.

Equations (12) and (13) are the SR extension of the New-

ton’s law of gravity and may be used to approximate the GR

in case the distance between the two point bodies is much

greater than the Schwarzschild radius r � rs. The term

special-relativistic also means dynamic and the two terms in

many cases may be interchangeable.

V. AN ELEMENTAL SPACETIME MODEL OF THE
UNIVERSE, TENSILE PRESSURE, AND THE
EQUATIONS OF STATE

Let us consider a place in the c-element space, where the

gravity of no particular star or planet dominates. Here at a

particular epoch a c-element is assumed to interact with all

masses of the universe gravitationally (see Fig. 1). We

naturally assume that the c-element space is perfect fluid

with its behavior characterized by the mass density, qc, and

isotropic pressure, pc (tensile pressure if pc < 0). To obtain

the total pressure exerted by the gravity of the universe, we

will consider, in particular, the pressure pcn exerted by the

mass Mn at a distance, rn,

pcn ¼ �
GqcMn

rn
cn; (14)

where cn ¼ ½1� ð _rn=cÞ2��1=2
. Now since pc is a scalar, we

have the total pressure

pc ¼
X

n

pcn; (15)

where the summation is for all the masses, Mn, in the uni-

verse (other than the small volume of Da being considered).

The summation may then be performed as integral

pc ¼ �Gqc

ða

0

qu

4pr2

r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð _r=cÞ2

q dr;

¼ �4pGqcqu

c2

H2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

c2
a2

s0
@

1
A
; (16)

where a denotes the radius of the universe measured from

the center of the small volume of radius Da being consid-

ered. The integration is performed over the universe, Da to a,

and we let Da! 0. We use the Hubble’s empirical law

_r ¼ Hr assuming H is constant throughout the universe at a

particular epoch. The density of the universe, qu (from the

radius Da to a,) is the sum of the density of the c-elements,

qc, which is constant and independent of a, and the density

of all other matters, qa, that is proportional to a�3. Note the

differences of notations between the present work and the

KCDM model, qc � qK=c2 � qvac=c2, so Xc � XK. qm in

FIG. 1. (Color online) An elemental spacetime model for the universe (not

to scale).

c)This is seen by the length contraction of r under SR or may be argued by

more detailed discussion of Lorentz transformation.6
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the KCDM model may include observable as well as the

nonobservable dark matters versus qa in the present work

may include only the observable matters. In the present

work, qrad (or Xrad) is ignored as it is small.

Equation (16) then presents a local sound wave

speed,16,17 or in this case what we might call the speed of the

gravitational tensile pressure waves

c2
g ¼ �

@pc

@qc

¼ 4pGqu

c2

H2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

c2
a2

s0
@

1
A

or if cg ¼ c;

a2

c2
¼ 1

H2
1� 1� H2

4pGqu

 !2
2
4

3
5: (17)

If cg ¼ c, then Eqs. (16) and (17) yield

qc ¼ �pc=c2: (18)

This is the barotropic equation of state. Wilczek18 calls it a

well-tempered equation.

If _a ¼ Ha� c or in the nonrelativistic limit, Eqs. (16)

and (17) reduce, respectively, to

pc ¼ �2pGqcqua2 (19)

and

c2
g ¼ �

@pc

@qc
¼ 2pGqua2 or if cg ¼ c;

a2

c2
¼ 1

2pGqu

:

(20)

If cg ¼ c, the speed of light, then Eqs. (19) and (20) again

yield Eq. (18), the well-tempered equation. The well-

tempered equation is, therefore, Lorentz covariant.

The sound waves defined in Eqs. (17) and (20) are dilata-

tional, a consequence of the c-element space or the cosmo-

logical constant as discussed in Section II. To the author’s

knowledge, there is no analogous concept in GR, but if the

cosmological constant is nonzero they must be present on

top of the gravitational waves that are the perturbation radia-

tion of the spacetime itself.14,19

VI. THE EXPANDING UNIVERSE ACCORDING TO THE
SR-EXTENDED NEWTON’S LAW

We use Newton’s shell theorem to calculate the total

energy, the sum of the kinetic energy (K.E.) and the potential

energy (P.E.), of the nth particle having mass, Mn, at the

radius a from the center. Note that Newton’s shell theorem

ignores the gravitational pressure derived in Section V.

(Such pressure is in equilibrium and does not contribute to

the motion of the particle.) We may then write an equation

for the total energy

K:E:þ P:E: ¼ cMnc2 �Mnc2 � cGMuMn=a

¼ constant � �ðj=2ÞMnc2; (21)

where

c ¼ 1� ð _a=cÞ2
h i�1=2

; (22)

and Mu is the total mass within the sphere of the radius a(t),
a function of time. We have given the constant an ansatz,

�ðj=2ÞMnc2. In the Newtonian gravitation, if j < 0 the

kinetic energy provides more than the escape velocity; if

j ¼ 0 the kinetic energy and the gravitational potential

energy balances (flat); and if j > 0 the kinetic energy is

insufficient for Mn to escape from the gravity of Mu. Equa-

tions (21) and (22) yield

_a

a

� �2

¼ 1

ð1�j=2Þ2
2GMu

a3
� 1

c2

G2M2
u

a4
� jc2ð1� j=4Þ

a2

� �
:

(23)

For sufficiently small jjj or jjj � 1, the above approxi-

mates to

_a

a

� �2

¼ 2GMu

a3
� G2M2

u

c2a4
� jc2

a2
: (24)

We note

Mu ¼ Mc þMa; (25)

where Ma is the mass of all matters other than Mc, the mass

of the c-elements, within the sphere of the radius a. Accord-

ing to the model shown in Fig. 1, we have the following

relationships:

qc ¼ Mc

�
4p
3

a3

� �
¼ constant; (26)

Ma ¼
4p
3

a3qa ¼ constant; (27)

qu ¼ Mu=
4p
3

a3

� �
¼ qc þ qa: (28)

We then get from Eq. (24),

_a

a

� �2

¼ 8pGqu

3
� 16p2G2q2

u

9

a2

c2
� jc2

a2
; (29)

which is the SR-extended FRW equation (hereinafter denoted

as eFRW) according to the SR-extended Newtonian gravity,

i.e., eFRW-Newtonian or eFN. Equation (29) reduces to

the usual FRW equation if the second term is ignored. This

extra term is present because we used the full SR kinetic

energy term cMnc2 �Mnc2 and SR-extended Newton’s law,

Eq. (12), instead of their slow-motion approximations,

ð1=2ÞM _a2 and the normal Newton’s law, respectively.

Equation (29), together with the relativistic gravitational

sound wave, Eq. (17), and by setting cg ¼ c and j ¼ 0, are

solvable for qu and a, with the results,

quðeFNÞ ¼
H2

2pG
; aðeFNÞ ¼

ffiffiffi
3
p

2

c

H
: (30)
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For H ¼ H0, Eq. (30) gives qcrit ¼ H2
0=ð2pGÞ versus Equa-

tion (3).

If the second (order) term is ignored, Eq. (29) reduces to

the (nonrelativistic) FRW equation, Eq. (1). This together

with the nonrelativistic gravitational sound wave, Eq. (20),

and with cg ¼ c and j ¼ 0, gives

quðFÞ ¼
3H2

8pG
; aðFÞ ¼ 2ffiffiffi

3
p c

H
; (31)

where (F) denotes the values according to the usual FRW

equation. For H ¼ H0, Eq. (31) gives qcrit of Eq. (3). Note

that neither Eq. (30) nor Eq. (31) demands the knowledge of

the composition of qu or the velocity of the expansion. The

difference is only caused by the kinematics of the SR, specif-

ically the second order term of Eq. (29).

VII. THE EXPANDING UNIVERSE ACCORDING TO THE
GENERAL RELATIVITY WITH SPECIAL-RELATIVISTIC
DYNAMIC EFFECTS

The Robertson–Walker metric2–4 may be written in the

Cartesian coordinates

ds2 ¼ gl�dxldx� ¼ �c2dt2 þ a2ðtÞ dx2
i þ j

x2
i dx2

i

1� jr2

� �
;

(32)

with l; � ¼ 0; 1; 2; 3, i; j ¼ 1; 2; 3, r2 � x2
i ¼ x2 þ y2 þ z2,

and the nonzero components of the metric tensor, gl� ,

g00 ¼ �1; gii ¼ a2ðtÞ 1þ j
x2

i

1� jr2

� �
no sumð Þ:

(33)

The nonzero components of Ricci tensor, Rl� , are14

R00 ¼ �3€a=a;

Rij ¼ ð1=a2Þð€aaþ 2 _a2 þ 2jÞgij;
(34)

and

R ¼ ð6=a2Þð€aaþ 2 _a2 þ 2jÞ: (35)

The Einstein equation may be written in the form

Rl� ¼
8pG

c2
Tl� �

1

2
gl�T

� �
; (36)

where Tl� is the stress-energy tensor with T its trace.

The stress energy tensor for the perfect fluid may be

written

Tl� ¼ ðqu þ p=c2ÞUlU� þ pgl�; (37)

where Ul is the mean four velocity of the galaxies near the

event of interest (Ref. 19, p. 713). Our interest is to describe

the whole flat universe by a single expansion factor or the

radius. With b ¼ _a=c and c ¼ ð1� b2Þ�1=2
, we have the

four-velocity in the comoving frame

Ul ¼ @xl

@s
¼ @xl

@t

@t

@s
¼ cul ¼ cðc; 0; 0; 0Þ: (38)

The Lorentz factor, c, is essential since without it, the veloc-

ity itself is not in general a four vector. It brings the dynamic

effect for the expanding universe. If we further assume

c ¼ 1, we will eventually arrive at the FRW equation which

is nonrelativistic. In this sense, the term special-relativistic

also means dynamic, and the two terms may be interchange-

able. We then have from Eqs. (37) and (38),

T00 ¼ ðquc2 þ pÞc2 � p ¼ quc2c2 þ pðc2 � 1Þ
¼ c2ðquc2 þ b2pÞ; Tij ¼ pgij;

T ¼ Tl
l ¼ Tl�g

l� ¼ T00g00 þ Tijg
ij

¼ �c2ðquc2 þ b2pÞ þ 3p: (39)

One can then find the 00 equation

�3
€a

a
c2 ¼ 4pGc2 qu þ ð3� 2b2Þ p

c2

� �
; (40)

and the ij equation

€aaþ 2 _a2 þ 2j
a2

c2gij ¼ 4pGc2 qu � ð1� 2b2Þ p

c2

� �
gij;

(41)

where we can drop gij. The dimensions of the term

€a=a; ð _a=aÞ2, and a�2, [1/time]2 or [1/length]2, mean we must

add c2 to the left hand side to ensure the Lorentz covariance.6

From Eqs. (40) and (41),

_a

a

� �2

¼ 8pG

3
qu þ b2 p

c2

� �
� jc2

a2
: (42)

Note that if b ¼ 0, Eq. (42) is the FRW equation. We are

now ready to solve for qu and a from Eqs. (42) and (17). We

must, however, first recognize that

pc ¼ 3p: (43)

This is because pc is the sum of pressures in all radial

directions in polar coordinates, which is the same as the sum

of the pressures, p, in all three rectangular coordinate direc-

tions. By assuming C ¼ j ¼ 0, we finally get

_a

a

� �2

¼ 8pG

3
qu 1� b2 Xc

3

� �
: (44)

This is the eFRW equation according to the GR, i.e., eFRW-

GR or eFG or eFGðb;XcÞ, which compares with Eq. (29). If

b ¼ 0 or Xc ¼ 0, Eq. (44) again reduces to the (nonrelativis-

tic) FRW equation. By the use of qc ¼ qu � qa, we then get

quðb;XcÞ ¼
3H2

8pG
1� b2 Xc

3

� ��1

or

quðb; qaÞ ¼
3H2

8pG
� b2

3
qa

� �
1� b2

3

� ��1
: (45)
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Equation (17) gives the corresponding solutions for the

radius of the universe. With the notations quðeFGÞ �
qu½eFGðb;XcÞ� � quðeFG; b;XcÞ and aðeFGÞ � a½eFGðb;XcÞ�
� aðeFG; b;XcÞ; we get various limit solutions for Eq. (45)

quðeFG; 1; 1Þ ¼
9

16

H2

pG
; aðeFG; 1; 1Þ ¼

2
ffiffiffiffiffi
14
p

9

c

H
;

(46)

and

quðeFG;0;XcÞ ¼
3

8

H2

pG
; aðeFG;0;XcÞ ¼

2
ffiffiffi
2
p

3

c

H
: (47)

The second of Eq. (45) may be used to calculate quðbÞ, a

function of the velocity, when H and qa are known by

measurements.

VIII. THE DCD AND ORIGIN OF THE DARK MATTER

Equation (45) defines the DCD for the flat universe at

the present epoch

qcrit ¼ qu for j ¼ 0 and H ¼ H0: (48)

The SCD, Eq. (3), is a special case denoted in this sec-

tion as �qcrit. Below for brevity, we drop the subscript 0 and

interchangeably use qu and qcrit unless otherwise specified.

The limit values of the critical density and the corresponding

radius of the universe may then be found for various analyti-

cal cases from Eqs. (30), (31), (46), (47), (17), and (20) as

listed in Table I.

There is a trivial GR solution of Eq. (45) which shows

that when b ¼ 0 any combinations of Xc and Xa is valid as

long as Xc þ Xa ¼ 1. For more general cases, 0 < b � 1 and

0 < Xc � 1, Eq. (45) gives the values of qu and a as func-

tions of b and Xc or of b and qa. Given qa, we can calculate

qu, then qc ¼ qu � qa. By Xc ¼ qc=qu; Xa ¼ qa=qu, it then

guarantees Xu ¼ Xa þ Xc ¼ 1 as it should. In particular, if

the density of the observable baryonic matter, qb, is fixed

according to the Wilkinson microwave anisotropy probe

(WMAP) measurement,

qa � qb � 0:418	 10�27 kg=m3; (49)

under this constraint the admissible pairs of b and Xc may

then be found numerically. The numerical solution for

Eq. (45) for the ðb;XcÞ pair, (0.864, 0.965), is of particular

interest and also listed in Table I. This solution will be dis-

cussed below and in Section IX.

From Eq. (45), one may also write

qu ¼ 1� b2

3
�Xa

� �
1� b2

3

� ��1

�qu; where

�Xa ¼ qa=�qu; �qu ¼
3H2

8pG

: (50)

which gives the relationship between the DCD, qcrit ¼ qu,

and the SCD, �qcrit ¼ �qu � ð3H2Þ=8pG. Suppose we analyze

cosmic data without the benefit of Eq. (45) but only in the

FRW framework or KCDM. One will then use the SCD for

normalization, hence from Eq. (45),

�Xc ¼
b2=3

1� b2 �Xa=3
�X

2

a �
1

1� b2 �Xa=3
�Xa þ

1� b2=3

1� b2 �Xa=3
;

(51)

where �Xc ¼ qc=�qcrit; �Xa ¼ qa=�qcrit. This compares with the

WMAP empirical relation, a data fit that follows a slightly

curved line:20

�Xc ¼ 0:0620�X
2

a � 0:825�Xa þ 0:947: (52)

Both Eqs. (51) and (52) generally give �Xa þ �Xc 6¼ 1.

In Fig. 2, Xcð�XcÞ is shown as a function of Xað�XaÞ
(WMAP notations are XK and Xm, respectively; the bar has

TABLE I. Critical density and radius for various analytical cases. F stands

for FRW equation; eFN for eFRW equation within the SR-extended Newto-

nian gravity; and eFGðb;XcÞ for eFRW equation within the GR.

Analytical case qcrit=½H2=ðpGÞ� acrit=ðc=HÞ

F 3=8 2=
ffiffiffi
3
p

eFN 1=2
ffiffiffi
3
p

=2

eFG ð0;XcÞ 3=8 2
ffiffiffi
2
p

=3

eFG ð0:864; 0:965Þ �0:494 �0:870

eFG ð
ffiffiffi
3
p

=2; 1Þ 1=2
ffiffiffi
3
p

=2

eFG ð1; 1Þ 9=16 2
ffiffiffiffiffi
14
p

=9

FIG. 2. (Color online) Xcð�XcÞ is shown as a function of Xað�XaÞ (WMAP

notations are XK and Xm, respectively; the bar has been dropped in the axis

titles) to reveal the characteristics of the KCDM model in view of present

model. Line A shows the trajectory, Xc ¼ 1� Xa, where Xc ¼ qc=qu;

Xa ¼ qa=qu are the solutions of quðb;XcÞ ¼ 3H2=ð8pGÞð1� b2Xc=3Þ�1

with b ¼ 0:864 fixed and quðb;XcÞ � qcrit is the DCD. Curve B is the

same except the solutions are normalized by the SCD, �Xc ¼ qc=�qu;
�Xa ¼ qa=�qu; �qu � �qcrit ¼ 3H2=ð8pGÞ, which then result in a near-quadratic

relationship, �Xc ¼ ½ðb2=3Þ=ð1� b2 �Xa=3Þ��X2

a � ½1=ð1� b2 �Xa=3Þ��Xa þ ð1�
b2=3Þ=ð1� b2 �Xa=3Þ. Curve C is the quadratic relationship empirically

obtained by WMAP, �Xc ¼ 0:0620�X
2

a � 0:825�Xa þ 0:947. Curve D is the

same as Curve B except translated horizontally by a constant,

DXa ¼ Xc ¼ 0:240, i.e., by the amount of the CDM, to overlap Curve C

almost precisely (within 1.8% near Xa ¼ 1).
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been dropped in the axis titles) to reveal the characteristics

of the KCDM model in view of present model. Line A

shows the trajectory, Xc ¼ 1� Xa, where Xc ¼ qc=qu;

Xa ¼ qa=qu are the solutions of quðb;XcÞ ¼ 3H2=ð8pGÞ
ð1� b2Xc=3Þ�1

, Eq. (45), with b ¼ 0:864 fixed and qu �
qcrit is the DCD. Curve B is the same except the solutions

are normalized by the SCD, �Xc ¼ qc=�qu; �Xa ¼ qa=�qu; �qu �
�qcrit ¼ 3H2=ð8pGÞ, which then result in a near-quadratic

relationship, Eq. (51). Curve C is the quadratic relationship

empirically obtained by WMAP, Eq. (52). If Curve B is

allowed to translate horizontally by a constant, DXa ¼
0:240, it then becomes Curve D, which is found to overlap

Curve C almost precisely (within 1.8% near Xa ¼ 1.) This

translation is accomplished by replacing Xa in Eq. (51) with

Xa � 0:240. Clearly, this translation represents the CDM,

DXa ¼ Xc ¼ 0:240, but is it real? The answer is no, because

Curve B is not real, only Line A is the real solution to

Eq. (45). So how do we arrive at Line A from the empirical

curve C? First take the CDM, Xc ¼ 0:240, out of Curve C to

bring it back to match with Curve B, replace the SCD used

originally with the DCD, we will then arrive at the data fit

curve that matches the predicted Line A. This reverse pro-

cess shows that the hypothetical CDM is only an artifact of

the FRW equation which is insufficient for the description of

the dynamic effects. We have finally identified, almost cer-

tainly according to the present analysis, the source of the

CDM at least on a large scale.

According to the Hubble’s law, H ¼ _a=a, the velocity of

the expansion would begin to exceed the speed of light, _a ¼
c; at the critical radius, acrit ¼ c=H. According to the FRW

expansion, Table I or Eq. (31), aðFÞ ¼ 2=
ffiffiffi
3
p� 	

acrit, the edge

of the universe is currently expanding at the speed greater

than that of the light. All other cases summarized in Table I

predict a < acrit. When dynamic effects are included, the

edge of the universe is predicted to expand at the speed less

than that of light, as it should be according to the SR.

IX. DARK ENERGY AND DARK MATTER—NUMERICAL
EXAMPLES

A. The universe

Table II shows an inventory of the cosmic mass densi-

ties: the observable matter, dark energy, and dark matter.

Those reported by WMAP20–22 and Planck projects23,24 both

use the KCDM model and are close to each other. We only

use the former in this table. All calculations used the observ-

able matter density, Eq. (49), and the Hubble constant,

H0 � 2:25	 10�18 s�1 ð� 69:3 km=s=MpcÞ; (53)

both from the WMAP. The observable matter includes the

baryonic matter; other small quantities such as the cosmic

microwave background (CMB) radiation25 have been

ignored.

The second column shows quðFÞ and its breakdown

according to the WMAP þeCMBþBAOþH0 including dark

matter. The third and fourth columns show the breakdown

by the eFRW-Newtonian (eFN) and by eFRW-GR (eFG),

respectively. qu½eFGð0:864; 0:965� � 0:494H2=ðpGÞ matches

quðeFNÞ ¼ ð1=2ÞH2=ðpGÞ within �1.2%. The dynamic mod-

els, both quðeFNÞ and qu½eFGðb;XcÞ�, are able to fit the cos-

mological data with two parameters, Xu ¼ Xb þ Xc ¼ 1,

rather than three, Xu ¼ Xb þ Xc þ Xc ¼ 1, i.e., without the

CDM. The last column is likely the most accurate prediction

for the breakdown of the density of the universe.

B. Rotation curves

The need for the dark matter originates from the obser-

vations of the spiral galaxies or the rotation curves of

them26–28 Most cosmological observations are satisfactorily

described by the KCDM model with Xb 
 0:05, Xc 
 0:25,

and Xcð� XKÞ 
 0:7. This includes28 the study of the super-

novae, the spiral galaxies, galaxy clusters, gravitational lens,

CMB, and large scale structures such as Lyman-alpha

forest.29

Recently, however, McGaugh et al.30 followed 153 vari-

ous galaxies and reported a definitive correlation between

the radial acceleration traced by rotation curves and that pre-

dicted by the observed distribution of baryons. The dark mat-

ter contribution is then fully specified by that of the baryons,

in support of the present theory. According to the present

calculations, the same effect of the special relativity in the

form of the DCD must be present uniformly in the entire uni-

verse. Any local behavior such as that of the spiral galaxies

must also take it into account even though the rotation curves

show the local velocities much less than the speed of light.

This is born out in Eq. (38) which states the four-velocity

remains the same for an observer anywhere in the universe.

The DCD may help explain the seemingly anomalous rota-

tion curves of the galaxies or the gravitational lensing. This

warrants a detailed study of the local behaviors which, how-

ever, is beyond the scope of this paper.

X. CONCLUSION

An analysis according to the principles of special and

general relativity and less restrictive Newtonian gravity

proves the dynamic effects to be substantial for the expand-

ing universe. With the resulting DCD, typically greater than

TABLE II. Cosmic mass density inventory. The second column shows the

breakdown by WMAP þeCMBþBAOþH0 (WMAP.) The third and the

fourth are the breakdowns by the eFRW-Newtonian (eFN) and by

the eFRW-GR (eFG), respectively. Note that the latter two do not require the

CDM to fit the cosmic data and agree with each other within 1.4%.a

F

KCDM

ðWMAPÞ eFN

eFG

ð0:864;
0:965Þ

b ¼ _a=c 
0 N/A 0.864

qb (Baryon) 0.418 0.418 0.418

Xb 0.0463 0.0347 0.0352

qc (Dark Energy) 6.44 11.62 11.46

Xc 0.714 0.965 0.965

qc (CDM) 2.17 0 0

Xc 0.240 0 0

qu (Total) 9.03 12.04 11.88

qu=½H2=ðpGÞ� 3=8 1=2 0.494

aH¼ 69.3 km/s/Mpc (WMAP); Unit of q is 10�27 kg/m3.
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the SCD, I am able to identify the hypothetical CDM as

being an artifact of the FRW equation that is insufficient to

describe the dynamic effects. With the included special-

relativistic dynamic effects, I can now predict the cosmic

data with two parameters, matter and the cosmological con-

stant, without the CDM at least on a large scale.

The SR extension of the Newton’s gravity, Eq. (29), is

an asymptotic approximation of the GR. The second method

is the SR extension of the FRW equation derived within the

framework of GR, Eq. (44). The dynamic critical densities

they predict for our expanding universe agree within 1.4% of

each other, a convincing result.

Other critical elements of this work include the gravita-

tional sound wave speeds, both SR-extended and nonrelativ-

istic, Eqs. (17) and (20), respectively, and the barotropic

equation of state, Eq. (18). The derivation of these equations

assumes the presence of mass anywhere in the universe, a

trait of the cosmological constant, dark energy, or the

c-elements, all referring the same thing in various units.

I should mention some of the work that also attempt to

extend the Newtonian gravity to include modified or relativ-

istic features, particularly the modification of the Newtonian

dynamics (MOND)31–34 and a special-relativistic correction

of Newton’s law.35,36 Unfortunately, they tend to be either a

phenomenological formulation or outside the Newtonian or

special and general relativistic principles.

To the author’s knowledge, this is the first time (a) the

effect of the special-relativistic dynamics has been accounted

for in the FRW equation both by the SR-extended Newton’s

law and within the framework of the GR and (b) a negative

pressure of the space is calculated by the use of both the

Newton’s law and the SR-extended Newton’s law.
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